Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 354: 141698, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490608

RESUMO

The increased use of personal care products and detergents in modern society has raised concerns about their potential adverse effects on the environment. These products contain various chemical compounds that can persist in water bodies, leading to water pollution and ecological disturbances. Bioremediation has emerged as a promising approach to address these challenges, utilizing the natural capabilities of microorganisms to degrade or remove these contaminants. This review examines the current strategies employed in the bioremediation of personal care products and detergents, with a specific focus on their sustainability and environmental impact. This bioremediation is essential for environmental rejuvenation, as it uses living organisms to detergents and other daily used products. Its distinctiveness stems from sustainable, nature-centric ways that provide eco-friendly solutions for pollution eradication and nurturing a healthy planet, all while avoiding copying. Explores the use of microbial consortia, enzyme-based treatments, and novel biotechnological approaches in the context of environmental remediation. Additionally, the ecological implications and long-term sustainability of these strategies are assessed. Understanding the strengths and limitations of these bioremediation techniques is essential for developing effective and environmentally friendly solutions to mitigate the impact of personal care products and detergents on ecosystems.


Assuntos
Cosméticos , Detergentes , Animais , Biodegradação Ambiental , Ecossistema , Estágios do Ciclo de Vida
2.
Chemosphere ; 350: 141123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185426

RESUMO

Pollution is a global menace that poses harmful effects on all the living ecosystems and to the Earth. As years pass by, the available and the looming rate of pollutants increases at a faster rate. Although many treatments and processing strategies are waged for treating such pollutants, the by-products and the wastes or drain off generated by these treatments further engages in the emission of hazardous waste. Innovative and long-lasting solutions are required to address the urgent global issue of hazardous pollutant remediation from contaminated environments. Myco-remediation is a top-down green and eco-friendly tool for pollution management. It is a cost-effective and safer practice of converting pernicious substances into non-toxic forms by the use of fungi. But these pollutants can be transformed into useable products along with multiple benefits for the environment such as sequestration of carbon emissions and also to generate high valuable bioactive materials that fits as a sustainable economic model. The current study has examined the possible applications of fungi in biorefineries and their critical role in the transformation and detoxification of pollutants. The paper offers important insights into using fungal bioremediation for both economically and environmentally sound solutions in the domain of biorefinery applications by combining recent research findings.


Assuntos
Poluentes Ambientais , Biodegradação Ambiental , Ecossistema , Resíduos Perigosos
3.
Environ Pollut ; 339: 122720, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839681

RESUMO

Rapid industrialization has exacerbated the hazard to health and the environment. Wide spectrums of contaminants pose numerous risks, necessitating their disposal and treatment. There is a need for further remediation methods since pollutant residues cannot be entirely eradicated by traditional treatment techniques. Bio-adsorbents are gaining popularity due to their eco-friendly approach, broad applicability, and improved functional and surface characteristics. Adsorbents that have been modified have improved qualities that aid in their adsorptive nature. Adsorption, ion exchange, chelation, surface precipitation, microbial uptake, physical entrapment, biodegradation, redox reactions, and electrostatic interactions are some of the processes that participate in the removal mechanism of biosorbents. These processes can vary depending on the particular biosorbent and the type of pollutants being targeted. The systematic review focuses on the many modification approaches used to remove environmental contaminants. Different modification or activation strategies can be used depending on the type of bio-adsorbent and pollutant to be remediated. Physical activation procedures such as ultrasonication and pyrolysis are more commonly used to modify bio-adsorbents. Ultrasonication process improves the adsorption efficiency by 15-25%. Acid and alkali modified procedures are the most effective chemical activation strategies for adsorbent modification for pollution removal. Chemical modification increases the removal to around 95-99%. The biological technique involving microbial culture is an emerging field that needs to be investigated further for pollutant removal. A short evaluation of modified adsorbents with multi-pollutant adsorption capability that have been better eliminated throughout the adsorption process has been provided.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Biodegradação Ambiental
4.
Environ Pollut ; 327: 121572, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028793

RESUMO

Heavy metals, dyes and pharmaceutical pollutants in water environment are considered as serious threat to the human and animal health globally. Rapid development of industrialization and agricultural activities are the major source for eliminating the toxic pollutants into the aquatic environment. Several conventional treatment methods have been suggested for the removal of emerging contaminants from wastewater. Algal biosorption, among other strategies and techniques, is demonstrating to be a limited technical remedy that is more focused and inherently more efficient and helps remove dangerous contaminants from water sources. The different environmental effects of harmful contaminants, including heavy metals, dyes, and pharmaceutical chemicals, as well as their sources, were briefly compiled in the current review. This paper provides a comprehensive definition of the future possibilities in heavy compound decomposition by using algal technology, from aggregation to numerous biosorption procedures. Functionalized materials produced from algal sources were clearly proposed. This review further highlights the limiting factors of algal biosorption to eliminate the hazardous material. Finally, this study showed how the existence of algae indicates a potential, effective, affordable, and sustainable sorbent biomaterial for minimizing environmental pollution.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Animais , Humanos , Águas Residuárias , Purificação da Água/métodos , Plantas , Preparações Farmacêuticas
5.
Chemosphere ; 308(Pt 2): 136368, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36088969

RESUMO

Wastewater from diverse industrial sectors, agricultural practices and other household activities causes water pollution that result in different environmental issues. The main goals of wastewater treatment are typically to enhance the purity of wastewater and to enable the disposal of domestic and industrial effluents without endangering human health or causing excessive environmental issues. There were several natural and synthetic materials which have been utilized for wastewater treatment, amongst them polymers gain more importance due to their non-toxicity, economic feasibility, abundant availability of sources, renewability, biocompatibility, biodegradability, etc. The organic polymers such as cellulose, chitin, gelatin, alginates, lignin, dextran and other starch derivatives are the most commonly used natural polymers in wastewater treatments. The unique physical and chemical characteristics of the natural polymers make them become an alternative in wastewater treatments such as membrane filtration, adsorption, coagulation, flocculation and ion-exchange process to remove harmful contaminants such as toxic metals, dyes, medicines, pesticides, and so on. The review article discusses natural polymers and related uses in wastewater treatment. This review mainly focused on the wastewater treatment using natural polymers and the techniques involved for their extraction from natural sources. The recent trends in polymer extraction from the natural sources and the scope for the future research of natural polymers in various sectors are also discussed in detail.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Celulose , Quitina , Corantes , Dextranos , Gelatina , Humanos , Lignina , Praguicidas/análise , Polímeros , Amido , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
6.
Chemosphere ; 271: 129540, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33434824

RESUMO

Industrialization, urbanization and other anthropogenic activities releases different organic and inorganic toxic chemicals into the environment which prompted the water contamination in the environment. Different physical and chemical techniques have been employed to treat the contaminated wastewater, among them biological wastewater treatment using algae has been studied extensively to overwhelm the constraints related to the usually utilized wastewater treatment techniques. The presence of bacterial biota in the wastewater will form a bond with algae and act as a natural water purification system. The removal efficiency of single algae systems was very low in contrast with that of algal-bacterial systems. Heterotrophic microorganisms separate natural organic matter that is discharged by algae as dissolved organic carbon (DOC) and discharges CO2 that the algae can take up for photosynthesis. Algae bacteria associations offer an exquisite answer for tertiary and scrape medicines because of the capacity of micro-algae to exploit inorganic compounds for their development. Furthermore, for their ability to evacuate noxious contaminants, in this way, it does not prompt optional contamination. The present review contribute the outline of algae-bacteria symbiotic relationship and their applications in the wastewater treatment. The role of algae and bacteria in the wastewater treatment have been elucidated in this review. Moreover, the efforts have been imparted the importance of alage-bacteria consortium and its applications for various pollutant removal from the environment.


Assuntos
Águas Residuárias , Purificação da Água , Bactérias , Carbono , Fotossíntese , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...